Skip to main content

Computational Stress in Production


Last night I attended MiniCAST, an online version of the Association for Software Testing's famous CAST conference. I've never been to CAST in person but I can say that the vibe here was great, much more informal and peer-based than the presenter-audience split I've seen elsewhere. It ran for four hours and squeezed in four talks on two tracks, several socialising sessions, and a keynote from Rachel Kibler.

Rachel spoke about stress cases, those scenarios when context, or the product, or both in tandem distress the user. For example, the health-tracking app that excluded women because it didn't include menstrual cycles, or the social media app that pushed a daughter's photo into a dad's timeline with a celebratory whoop ... on the anniversary of her death, or the ride-share app with numerous pop-ups that is hard to use in the dark, walking fast, with low battery, trying to get a lift out of a bad neighbourhood.

These kinds of threats to inclusivity, emotional stability, and personal security are seen in development process with low diversity, a focus on success, and a lack of interest in users and their real life situations. 

While not always common, stress cases should not be dismissed as simple edge cases (traditionally, a situation where some parameter is pushed to an extreme value). They affect real people in real, tangible, consequential ways. In our ROI-driven world this may not be enough of an argument for some software producers, but the potential for reputational damage probably is.

To help to avoid cases of stress in the wild, Rachel suggested a few approaches in development:

  • Have a designated dissenter, someone whose role is to look for the flaws, find the stress points, advocate for those who find themselves off the happy path.
  • Run pre-mortems, where the potential bad outcomes are written up as headlines and then routes to avoid them are found.
  • Read copy aloud in a bright voice. How does it sound when the content doesn't fit that medium?
  • Give some of your personas traumatic back history.
  • Put yourself under stress when testing. How does that feel? Where does the product fail (you)?
  • Be bold in telling management to be kind, considerate, and ethical.

Remember, there is no average user and someone is always having a bad day.


 Sarah Aslanifar talked about computational thinking which she described as:
an iterative system of generative reasoning in which people build models of a subject in a notation capable of being executed objectively and automatically be a machine, with observable and falsifiable output.
This style of thinking is the result of a logical progression from concrete to abstract thought through human history: oral, written, and now computational. As I understood it, at each stage it was possible for there to be dialogue at a greater remove from reality and at a greater distance between participants.

We're in the computational phase now and our abstractions, or models, have the potential to be encoded and executed. Monte Carlo simulation, where scenarios are run numerous times to understand the space of possible outcomes from some starting situation and with some set of constraints, might be an example.

I don't think Sarah said it explicitly, but the key thing here seems to be the use of the computer as a tool to aid thinking. Exercising a model independently of our own heads gives us a chance to reflect on where it is successful and where it deviates from reality. Analysis of the results can help us to determine what to alter to try to make it better.

Machine learning seems like an interesting area of this space. It is notoriously hard to interrogate, although it is certainly possible to experiment with parameters to improve its outcomes. A generate-and-test strategy is reasonable for exploring an unknown area, but it's not clear to me that it would qualify as computational thinking, not least because of the falsifiability requirement in Sarah's definition.

Perhaps I should have asked Alex Eftimiades about that. He presented on the challenges and value of testing machine learning systems in production. Production for him is financial systems, and the goal of his work is to inspect the firehose of data looking for potentially fraudulent transactions.


One of the points he made early on was that in the "traditional" software testing world, there is a culture of binary pass/fail decisions, where a fail typically indicates some kind of bug. In the machine learning world that sharp distinction is smooshed out into a probability distribution where uncertainty around a result is the norm.

Without a guillotine oracle, the approaches open to testers are to question performance and divergences. These are still comparisons, because testing is about finding differences that make a difference, but they are now statistical in nature. 

Without going into the technical weeds too much, Alex asked questions like does the performance of the system on its training and production data differ by an amount that is not explained by baseline variation? If I tweak the inputs to the system in known ways does the output of the system change in step in ways that are explainable and reasonable? Can I create a threshold for alerting by adjusting it until the balance of true and false positives is acceptable to me, in this context, at this time?

Comments

Popular posts from this blog

Meet Me Halfway?

  The Association for Software Testing is crowd-sourcing a book,  Navigating the World as a Context-Driven Tester , which aims to provide  responses to common questions and statements about testing from a  context-driven perspective . It's being edited by  Lee Hawkins  who is  posing questions on  Twitter ,   LinkedIn , Mastodon , Slack , and the AST  mailing list  and then collating the replies, focusing on practice over theory. I've decided to  contribute  by answering briefly, and without a lot of editing or crafting, by imagining that I'm speaking to someone in software development who's acting in good faith, cares about their work and mine, but doesn't have much visibility of what testing can be. Perhaps you'd like to join me?   --00-- "Stop answering my questions with questions." Sure, I can do that. In return, please stop asking me questions so open to interpretation that any answ...

Can Code, Can't Code, Is Useful

The Association for Software Testing is crowd-sourcing a book,  Navigating the World as a Context-Driven Tester , which aims to provide  responses to common questions and statements about testing from a  context-driven perspective . It's being edited by  Lee Hawkins  who is  posing questions on  Twitter ,   LinkedIn , Mastodon , Slack , and the AST  mailing list  and then collating the replies, focusing on practice over theory. I've decided to  contribute  by answering briefly, and without a lot of editing or crafting, by imagining that I'm speaking to someone in software development who's acting in good faith, cares about their work and mine, but doesn't have much visibility of what testing can be. Perhaps you'd like to join me?   --00-- "If testers can’t code, they’re of no use to us" My first reaction is to wonder what you expect from your testers. I am immediately interested ...

The Best Programmer Dan Knows

  I was pairing with my friend Vernon at work last week, on a tool I've been developing. He was smiling broadly as I talked him through what I'd done because we've been here before. The tool facilitates a task that's time-consuming, inefficient, error-prone, tiresome, and important to get right. Vern knows that those kinds of factors trigger me to change or build something, and that's why he was struggling not to laugh out loud. He held himself together and asked a bunch of sensible questions about the need, the desired outcome, and the approach I'd taken. Then he mentioned a talk by Daniel Terhorst-North, called The Best Programmer I Know, and said that much of it paralleled what he sees me doing. It was my turn to laugh then, because I am not a good programmer, and I thought he knew that already. What I do accept, though, is that I am focussed on the value that programs can give, and getting some of that value as early as possible. He sent me a link to the ta...

Beginning Sketchnoting

In September 2017 I attended  Ian Johnson 's visual note-taking workshop at  DDD East Anglia . For the rest of the day I made sketchnotes, including during Karo Stoltzenburg 's talk on exploratory testing for developers  (sketch below), and since then I've been doing it on a regular basis. Karo recently asked whether I'd do a Team Eating (the Linguamatics brown bag lunch thing) on sketchnoting. I did, and this post captures some of what I said. Beginning sketchnoting, then. There's two sides to that: I still regard myself as a beginner at it, and today I'll give you some encouragement and some tips based on my experience, to begin sketchnoting for yourselves. I spend an enormous amount of time in situations where I find it helpful to take notes: testing, talking to colleagues about a problem, reading, 1-1 meetings, project meetings, workshops, conferences, and, and, and, and I could go on. I've long been interested in the approaches I've evol...

Not Strictly for the Birds

  One of my chores takes me outside early in the morning and, if I time it right, I get to hear a charming chorus of birdsong from the trees in the gardens down our road, a relaxing layered soundscape of tuneful calls, chatter, and chirrupping. Interestingly, although I can tell from the number and variety of trills that there must be a large number of birds around, they are tricky to spot. I have found that by staring loosely at something, such as the silhouette of a tree's crown against the slowly brightening sky, I see more birds out of the corner of my eye than if I scan to look for them. The reason seems to be that my peripheral vision picks up movement against the wider background that direct inspection can miss. An optometrist I am not, but I do find myself staring at data a great deal, seeking relationships, patterns, or gaps. I idly wondered whether, if I filled my visual field with data, I might be able to exploit my peripheral vision in that quest. I have a wide monito...

ChatGPTesters

The Association for Software Testing is crowd-sourcing a book,  Navigating the World as a Context-Driven Tester , which aims to provide  responses to common questions and statements about testing from a  context-driven perspective . It's being edited by  Lee Hawkins  who is  posing questions on  Twitter ,   LinkedIn , Mastodon , Slack , and the AST  mailing list  and then collating the replies, focusing on practice over theory. I've decided to  contribute  by answering briefly, and without a lot of editing or crafting, by imagining that I'm speaking to someone in software development who's acting in good faith, cares about their work and mine, but doesn't have much visibility of what testing can be. Perhaps you'd like to join me?   --00--  "Why don’t we replace the testers with AI?" We have a good relationship so I feel safe telling you that my instinctive reaction, as a member of the T...

Vanilla Flavour Testing

I have been pairing with a new developer colleague recently. In our last session he asked me "is this normal testing?" saying that he'd never seen anything like it anywhere else that he'd worked. We finished the task we were on and then chatted about his question for a few minutes. This is a short summary of what I said. I would describe myself as context-driven . I don't take the same approach to testing every time, except in a meta way. I try to understand the important questions, who they are important to, and what the constraints on the work are. With that knowledge I look for productive, pragmatic, ways to explore whatever we're looking at to uncover valuable information or find a way to move on. I write test notes as I work in a format that I have found to be useful to me, colleagues, and stakeholders. For me, the notes should clearly state the mission and give a tl;dr summary of the findings and I like them to be public while I'm working not just w...

Build Quality

  The Association for Software Testing is crowd-sourcing a book,  Navigating the World as a Context-Driven Tester , which aims to provide  responses to common questions and statements about testing from a  context-driven perspective . It's being edited by  Lee Hawkins  who is  posing questions on  Twitter ,   LinkedIn , Mastodon , Slack , and the AST  mailing list  and then collating the replies, focusing on practice over theory. I've decided to  contribute  by answering briefly, and without a lot of editing or crafting, by imagining that I'm speaking to someone in software development who's acting in good faith, cares about their work and mine, but doesn't have much visibility of what testing can be. Perhaps you'd like to join me?   --00-- "When the build is green, the product is of sufficient quality to release" An interesting take, and one I wouldn't agree with in gener...

Postman Curlections

My team has been building a new service over the last few months. Until recently all the data it needs has been ingested at startup and our focus has been on the logic that processes the data, architecture, and infrastructure. This week we introduced a couple of new endpoints that enable the creation (through an HTTP POST) and update (PUT) of the fundamental data type (we call it a definition ) that the service operates on. I picked up the task of smoke testing the first implementations. I started out by asking the system under test to show me what it can do by using Postman to submit requests and inspecting the results. It was the kinds of things you'd imagine, including: submit some definitions (of various structure, size, intent, name, identifiers, etc) resubmit the same definitions (identical, sharing keys, with variations, etc) retrieve the submitted definitions (using whatever endpoints exist to show some view of them) compare definitions I submitted fro...

Express, Listen, and Field

Last weekend I participated in the LLandegfan Exploratory Workshop on Testing (LLEWT) 2024, a peer conference in a small parish hall on Anglesey, north Wales. The topic was communication and I shared my sketchnotes and a mind map from the day a few days ago. This post summarises my experience report.  Express, Listen, and Field Just about the most hands-on, practical, and valuable training I have ever done was on assertiveness with a local Cambridge coach, Laura Dain . In it she introduced Express, Listen, and Field (ELF), distilled from her experience across many years in the women’s movement, business, and academia.  ELF: say your key message clearly and calmly, actively listen to the response, and then focus only on what is relevant to your needs. I blogged a little about it back in 2017 and I've been using it ever since. Assertiveness In a previous role, I was the manager of a test team and organised training for the whole ...